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Abstract

Techniques in estimating large-scale forest inventories often require some assess-
ment of misclassification errors between different measurement systems. The
Composite Estimator, a statistical technique based on the Kalman Filter and
developed by Dr. Ray Czaplewski, provides a means of estimating misclassifia-
tion errors and bias. From 1994 through 1997 the ACAS software package was
developed at the USDA Forest Service to implement the Composite Estimator.
This paper introduces the Composite Estimator, its application, some of the
challenges surrounding its execution, including a brief discussion of the ACAS
software development.
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Chapter 1

Motivation for the
Composite Estimator in
Forest Mensuration

It is important to be able to evaluate and compare the accuracy of different sur-
veying methods used in the estimation of forest resources, especially as cheaper,
more advanced techniques become available. The trade-off between accuracy
and cost effectiveness must be quantitatively understood in order to make ef-
fective forest management decisions.

The Composite Estimator was created to combine separate surveys of a single
forest population using different measurement techniques, utilizing the combi-
nation of high-accuracy/low-cost and low-accuracy/high-cost methods to form
an optimal estimator. The purpose of the composite estimator is to twofold.
First it measures the level of agreement between different classification systems
which can aid in their evaluation. Second, it makes it possible to combine all
available information from different surveys to create a best-possible estimate
of the forest composition.

Although the Composite Estimator can be abstracted to almost any com-
bination of measurement techniques and applications in a variety of fields, the
remainder of this paper will focus on a single specific implementation involving
three set classification systems.

1.1 Terminology

It is handy to formalize some of the vocabulary that will be used throughout
this paper. We will be working primarily with normalized vectors whose el-
ements represent proportions of categorical data. The terms “category” and
“classification” and “composition” will be used frequently.
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Primary Sampling Unit (PSU) A section of land small enough to be clas-
sified as falling under one unique category.

Census A compositional measurement of an entire forest population. A census
has no associated sampling error.

Category A unique identification or “type” of forest.

Classification The act of measurement by which a forest plot is identified as
belonging to a specific category.

Compositional Data Data referring to the composition of a population into
its distinct categories.

Composition A normalized vector where each element represents a unique
category (or unique combination of categories across different classifica-
tions) and measures the proportion of the population that falls under that
category.

1.2 Formalizing the Composite Estimator

The ultimate goal is to create estimates of categorical forest composition. In
other words, given a specific 100 hectares of a forest, how would that land be
broken down into a set number of distinct categories? What percentage of the
land could be classified as mature hardwood forest land? How much would be
classified as grassland? We want our estimate to be in the form of a normalized
vector, where each element represents a distinct forest-type classification.

In this particular application we will define three techniques that are used
to gather data:

Satellite Maps Satellite images are obtained of the entire forest population
in question. In these images, individual pixels can be mapped to sections
of the forest, and the categorical measurement is based on the color of
each pixel. This method may have a high error rate but it is unique in
allowing a census of the entire forest population to be taken, rather than
depending on a sample.

Aerial Photography Aerial photographs are taken of large sections of forest
land. Trained specialists carefully examine plots within the photographs
and make an ocular estimate of the forest composition. This method is
inexpensive enough to allow fairly large samples to be taken.

Ground Survey The most accurate way to classify a forest plot is to send
someone in person to visit specific forest locations and personally identify
the type of forest. This method is extremely expensive and problematic,
because some places are hard to reach. Therefore sampling is often re-
stricted to sampling units that are “within walking distance of an existing
road.” Due to high costs, these sample sizes are typically small.
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With these three methods we will assume that for a specific section of forest the
following data have been collected:

Census (Satellite) The forest population in question is mapped to satellite
images. Each pixel is matched to a specific type of forest land based on its
color. The final statistic is a normalized vector estimating the composition
of the entire population. Note that although there may be a substantial
measurement (identification) error, there will be no sample error because
the entire population is being measured.

Phase I (Satellite and Aerial Sample) A large number of samples are taken
from aerial photos. Forest classification is based on visual examination of
each PSU in the photographs. Additionally, the sample plot is located on
the satellite map and the classification is estimated based on pixel-color.
In other words, for each sample in this data set data are gathered (ie. a
category is assigned) from both aerial photography and satellite imaging.

Phase II (Satellite, Aerial and Ground Sample) A small number of sam-
ples are taken by sending a surveyor to sampled forest locations. (Recall
this method is expensive so the sample size will be smaller than that of
the Phase I survey.) For every PSU in the Phase II survey all three clas-
sification systems are used, meaning that a person is sent out to make a
personal inspection, and that plot is also identified on an aerial map and
the satellite image. It is important to note that the Phase II PSUs are
not a subset of the Phase I PSUs. Aerial photograph classification data
of the Phase II plots is not included in the Phase I estimation.

1.3 Defining Initial Estimates

Let us say that we wish to estimate the composition of 100 hectares of forest
based on four mutually-exclusive categories: hardwood forest, softwood forest,
shrub, or other. We want to estimate x where

x̂ =

 x̂1

...
x̂4


is a normalized vector with four elements representing the proportion of land
covered with hardwood forest, softwood forest, shrubs and other. Note these
categories are arbitrary, created for this example. The exact designations are
irrelevant.

1.3.1 First statistic: Satellite Census

We have three unique data sets available to estimate the forest composition of
this population. The first set of data represents the satellite image of this 100
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hectare area of forest. This will be in the form of a 4-element vector representing
the area that has been identified as hardwood, softwood, shrub and other, with
the areas totalling 100 hectares. For example, the data may look like

23.81
48.83
10.12
17.24


where the units of measure are hectares, and the column sums to 100 hectares.
In truth, we are only interested in the proportional composition of the forest,
so without loss of generality we can normalize this statistic, dropping the unit
of measure (hectares) and thus creating a compositional estimate. Henceforth
we will assume the estimate x̂sat is normalized. We will denote the statistic as

x̂sat =


x̂1

x̂2

x̂3

x̂4

 =


0.2381
0.4883
0.1012
0.1724


where for each xi the subscript i is an index that represents the category

of hardwood, softwood, etc. If there are m different unique categories (in this
example, m = 4) then i ∈ {1, 2, ...,m}.

1.3.2 Phase I Data: Aerial Photography

The second set of data is a collection of n sample plots. Each plot is measured
and categorized by both satellite and aerial photography methods.

We can thus represent the raw data in a table

PSU Satellite Category Aerial Category
1 hardwood hardwood
2 hardwood softwood
3 softwood softwood
4 hardwood hardwood
...

...
...

For each measurement (plot) p where p = 1, ..., n we can represent each PSU
by a vector

ẑp =



z11

...
zij

...
zmm

 (1.1)

where i represents the category (hardwood, softwood, etc.) as identified from
the satellite map and j represent the category as identified from the aerial
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photography. Note that this vector will have m− 1 elements equal to zero and
a single element equal to one.

The measurements of these n plots can then be used to compute two statis-
tics: a sample mean and sample covariance matrix using straightforward meth-
ods. If we combine the vectors z1, ..., zn into a data matrix Z then we can create
a sample mean x̂photo and sample covariance matrix Ŝphoto by

x̂photo =
1
n
Z′1 (1.2)

Ŝphoto =
1
n
Z′

(
I− 1

n
11′

)
Z (1.3)

These equations are the most basic traditional estimators of a vector mean
and covariance that can be found in the first chapter of a multivariate statistics
text. In all likelihood the actual sampling design of the Phase I and Phase
II surveys will call for more complicated equations than 1.2 and 1.3. For the
remainder of this presentation we will assume that the statistician has used the
most appropriate estimates x̂photo and Ŝphoto.

1.3.3 Phase II Data: Ground Survey

The ground survey data can be represented in a manner almost identical to the
aerial photography previously described. For n plots (We’re going to reuse the
variable n here, where n will be significantly smaller than it was in the Phase
I section.) we will have three categories: the satellite classification, an aerial
photography classification and a ground survey classification.

In this data set we can represent each plot sampling unit p by the vector

ẑp =



z111

...
zijk

...
zmmm

 (1.4)

where i, j and k represent the categories as identified by the satellite, aerial
photography and ground surveys respectively. This is identical to equation 1.1
except that there is one more index. It is therefore possible to follow the same
process to arrive at the statistics x̂ground and Ŝground for sample mean and
covariance matrix for the third data set.

There is one important thing to point out here. The composition estimate
x̂ground is a vector of size m3. In practice, many of these elements will be equal
to zero, because it is unlikely for every m3 combination of categories to occur
in the Phase II survey. Ideally we hope that most of the observations will occur
where the satellite, aerial photography and ground classifications agree on the
same category, so the various m3−m “misclassifications” (situations where the
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three measurement methods don’t agree) should ideally be less likely. Note also
that the Phase II survey is the one with the smallest sample size due to increased
cost.

In practice we will have many zero elements in the composition vectors and
zero-valued rows and columns in their corresponding covariance matrices. To
simplify computation we drop those zero elements, reducing the sizes of the
vectors and matrices. This does not effect the resulting computations.

1.3.4 Understanding the Original Probability Model

We have now defined the population mean x̂sat from the satellite census and
the sample means x̂photo and x̂ground, but we haven’t yet discussed what these
statistics are trying to measure. In essence, what is the “truth” we are trying
to measure?

To be precise, we are measuring the proportions of the distinct categories
as they would be measured by each of the three systems if each system could
measure the entire population. By this definition x̂sat has no error because it
does measure the exact proportion of categories as they are identified by the
satellite system. By establishing this model–estimating the forest types as they
would be identified by each system rather than trying to determine the “true”
categories of the forest–we are not confounding different classes of errors in our
estimates.

Naturally one would be often (but not always) interested in what the “true”
forest composition is. Since the ground classification system has the least likely
amount of error, one might consider it the closest estimate of the true compo-
sition of the forest population.

1.4 Spaces and Translation Matrices

The Census, Phase I and Phase II data all exist in different dimensions. It is very
simple to map a higher-dimensional space into a lower-dimensional one with a
straightforward linear transformation. For clarity we will first define the three
vector spaces we’ll be working in, and then we will define three transformation
matrices that will be used to map between these spaces.

1.4.1 Vector Spaces

When we use the term “compositions” we are referring to normalized vectors
that represent the ratios of categorical data. Compositions can be measured in
terms of either a single classification system or (in this example) up to three
classification systems. We will define three vector spaces ℘1, ℘2 and ℘3. The
superscript represents the number of classifications being used. The satellite
census estimate x̂sat ∈ ℘1. The space represents all m × 1 vectors x where
1′x = 1 and xi ∈ [0, 1].
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℘2 is the space that contains all compositions with both satellite and aerial
photography classifications. It is therefore a m2×1 dimensional space, similarly
having its elements sum to one and all elements xij ∈ [0, 1]. Similarly, ℘3 is
the m3×1 dimensional space containing all possible compositions classified over
satellite, aerial photograph, and ground survey techniques.

1.4.2 Translation Matrices

In section 1.3 we have defined three different statistics, two with corresponding
covariance matrices, but each having a different number of dimensions. It is
possible to create linear transformations on x̂photo so that it is mapped to the
same space as x̂sat, and x̂ground can be similarly reduced to the same space as
either x̂sat or x̂photo.

We will define linear transformation matrices H1, H2 and H3 where H1x̂photo

resides in the same space as x̂sat, H2x̂ground also resides in the same space as
x̂sat, and finally H3x̂ground resides in the same space as x̂photo

In summary:

H1 : ℘2 → ℘1 H2 : ℘3 → ℘1 H3 : ℘3 → ℘2

An Example

To make an extremely simple example, we will define two arbitrary forest types
A and B. Let us say that we have a satellite census x̂ ∈ ℘1 where

x̂ =
sat
A
B

(
x1

x2

)
(1.5)

and define a Phase I survey ȳ ∈ ℘2 where

ŷ =

sat photo
A A
A B
B A
B B


y11

y12

y21

y22

 (1.6)

The transformation matrix H1 would be defined as

H1 =
[

1 1 0 0
0 0 1 1

]
(1.7)

In this way we can use H1 to reduce ŷ into a 2× 1 where

H1ŷ =
sat
A
B

(
y11 + y12

y21 + y22

)
(1.8)

Now the estimates x̂ and H1ŷ share a common dimension (specifically, H1ŷ ∈
℘1) where their elements reflect the compositional proportions where the satel-
lite classification is A or B.
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1.5 The Composite Estimator

The purpose of the composite estimator is to combine two sample composition
estimates of the forest population using their corresponding covariance matrices
as a weighting method. This is similar in principle to the approach one would
take to combine two simple scalar means. If one had two different sample esti-
mates µ̂1 and µ̂2 with corresponding variances σ̂2

1 and σ̂2
2 , a combined estimator

might be a weighted average of the two

µ̂3 =
µ̂1σ̂

2
2 + µ̂2σ̂

2
1

σ̂2
1 + σ̂2

2

Let’s define the composite estimator as it would be used to combine x̂photo

and x̂ground using their sample covariance matrices for weighting. Dr. Czaplewski
used the concept of the Kalman Filter as the basis for the composite estimator[10],
so the following equations will be presented in that form. Since the Kalman Fil-
ter can be restated as an MLE, the equations could also be presented in that
form. (This is examined in greater detail in Appendix B.)

The composite estimator is defined by

X̂c = X̂ground + K(X̂photo −H2X̂ground) (1.9)

where
K = ŜgroundH′

2(H2ŜgroundH′
2 + Ŝphoto)− (1.10)

The corresponding covariance matrix is defined as

Ŝc = (I−KH2)Ŝground (1.11)

The matrix K is termed the gain matrix in the Kalman Filter.
There is one distinct difference between equation 1.9 and the traditional

Kalman Filter. Since all composition estimates necessarily sum to 1 (being
measurements of proportions) all the X̂ estimates are necessarily linearly de-
pendent making their covariance matrices singular. The use of the generalized
inverse in equation 1.10 is intended to circumvent this difficulty.

1.6 Evaluating the Composite Estimator

During the course of this research project much effort has been spent evaluating
the efficacy and validity of the composite estimator. There are a number of
assumptions to take into consideration, and even when these assumptions apply,
it may be difficult to attain a sufficient sample size to create meaningful results.

1.6.1 Equivalence to MLE Problem

Kalman Filter application to this problem (the Composite Estimator) may seem
artificial since the Kalman Filter is typically associated with time series prob-
lems and the Composite Estimator formulates it as a filtering problem within a
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single time frame. Fortunately the Kalman Filter formulation turns out to be
equivalent to an approach using the context of Maximum Likelihood Estima-
tion. This restatement and its equivalence are given as an exercise in Appendix
B.

There is an interesting observation to be made regarding the MLE approach.
This approach outlined in Appendix B does not take into consideration the unit-
sum constraint of compositional data. Typically the ML approach involving
constrained equations requires more complex approaches like Quadratic Pro-
gramming. However in practice we don’t require this more complex approach
because the composite estimator, whether written in Kalman Filter or MLE
form, always returns a result that is also a valid composition. This means the
elements are all non-negative and sum to one. Empirically the only times the
composite estimator produced a result that wasn’t a valid composition, we were
always able to discover difficulties in the original data where the results would
obviously be nonsensical. Section 1.6.3 describes some examples.

1.6.2 Multivariate Normal Distribution and Sample Size

The application of the Kalman Filter assumes the estimates (sample means)
have gaussian errors. Essentially, we are assuming that by the Central Limit
Theorem we will be able to make a multivariate normal assumption. In practice,
the sample size must be rather large in order for the individual elements of
the mean vectors to approach a normal distribution. Frequently there will be
a single rare instance in which a plot has been assigned extremely disparate
categories with the different classification methods. For example, in a rare
case a plot may be categorized as hardwood by the satellite map, softwood
by the aerial photography, and shrub by a ground survey. The likelihood of
these “singleton observations” increases greatly as the total number of possible
categories increases.

In the previous example we had four different possible categories (hardwood,
softwood, shrub and other) when in fact practitioners have attempted to apply
the composite estimator to systems with eight, ten, twenty or more possible
categories. Note that for ten categories the ground data, having classifications
for all three measurement systems, is represented potentially by a 1000 element
vector!

Due to the “proportional” nature of the estimates x̂sat, x̂photo and x̂ground,
each element xi is bound in the range [0, 1]. If the dimension of x̂ is m then
many of the elements will exist inside the range [0, 1/m]. For a sufficiently large
dimension the sample size will have to be substantial for the error distribution
to appear even vaguely gaussian.

1.6.3 Appropriate Sample Design

Two assumptions must be made when using the composite estimator to com-
bine two different surveys. First, we must assume that the survey was planned
and implemented using a satisfactory sampling method. Whether it is a simple
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random sample, stratified random sample, or more complex system, the validity
of the composite estimator assumes the existence of an appropriately unbiased
estimate. Second, sample populations used for the Phase I and Phase II esti-
mates should be the same. In our example where we have a large aerial sample
and a smaller ground survey, any significant differences in the populations from
which samples are drawn may invalidate the composite estimator.

As previously mentioned, the Phase II sample that includes all three clas-
sification methods is often restricted to sampling units located within walking
distance of a road. This restriction occurs because it is impossible for a surveyor
to reach parts of a forest beyond the reach of roads. Unfortunately, this restric-
tion will bias sample selection toward flat, non-extreme forest locations where
roads tend to be built. There may be entire forest categories like “rocky alpine
mountain-tops” or the middle of lakes that will exist in the satellite census but
will have zero occurrence in the Phase I or Phase II samples. Application of
the composite estimator in these situations sometimes leads to mathematical
paradox and nonsensical results.

Therefore it is important that the census and the surveys sample the same
population and (if possible) use identical sampling methods.

1.7 Inherent Difficulties with Compositional Data

Using the Central Limit Theorem to make a gaussian assumption is tempting,
because it is easy to work with statistics using multivariate normal distribu-
tions. The use of simple linear transformations are simple and straightforward.
Unfortunately, there are inherent difficulties with the restrictions imposed by
compositional data, specifically the unit-sum constraint. Karl Pearson[22] first
pointed out difficulties inherent with the interpretation of correlations between
ratios whose numerators and denominators contain common parts.

Since then, difficulties encountered while trying to interpret these correla-
tions have been described in papers by Chayes[5][6], Krumbein[17], Mosimann[20],
and in books by Chayes[7], Le Mâıtre[18] and Aitchison[2]. This section exam-
ines the most significant problems.

1.7.1 Linear Dependence

The simple linear dependence of the compositions requires us to deal with nec-
essarily singular covariance matrices. The most obvious solution is to remove an
unnecessary element, defining it as a linear combination of the others, in order
to achieve linear independence. An exploration of this approach is discussed in
section 1.8.1.

1.7.2 Gaussian Assumption

In practice, the elements of a composition vector are very small, positive num-
bers. By definition they must have non-negative values. Frequently these es-
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timates have sufficiently large variances that the lower bounds of their confi-
dence intervals fall well into the negative range. Interpretation of this result is
completely meaningless. A patchwork solution to this problem is to consider
the individual elements’ errors as beta priors to a binomial distribution. This
argument and its implementation (which we used as the default method of con-
structing confidence intervals in the ACAS output) is discussed in Appendix
A.

1.7.3 Negative bias difficulty

For an m-part composition we have the restriction

cov(x1, x2) + cov(x1, x3) + · · ·+ cov(x1, xm) = − var(x1) (1.12)

Although the correlations between all parts of a composition would be ex-
pected to freely span the range [0,1] this restriction requires that at least one
of the correlations assumes a negative value. Such forced negative correlation
could cause some misinterpretation of the data.

1.7.4 Subcomposition difficulty

In most multivariate situations, an q-part subset of an m-part composition would
be expected to preserve the covariance structure. For example, consider a 4-part
composition of categories A, B, C and D. Then consider a smaller subset of just
the categories A, B and C.

A B C D
A 1.000 0.267 -0.410 -0.484
B 0.267 1.000 -0.266 -0.419
C -0.410 -0.266 1.000 -0.490
D -0.484 -0.419 -0.490 1.000

A B C
A 1.000 -0.066 -0.701
B -0.066 1.000 -0.665
C -0.701 -0.665 1.000

This example comes from [2] where the above data come from a hypothetical
data set. The correlation matrix on top is taken by calculating all four cate-
gories. If we instead consider the composition of only the first three categories,
the resulting correlation matrix is given on the bottom. Notice the correlation
between categories A and B is positive (0.267) but when removing the fourth
category the same correlation between A and B becomes negative (-0.066)!

1.7.5 Basis difficulty

The above correlation matrices were computed from a multivariate sample of
unit-sum vectors. When we consider the original data which might be measured
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(before the unit-sum normalization is performed) we might expect the sample
correlation matrix of the original data to closely resemble the sample correlation
matrix of the normalized data. This is not the case, and the two correlation
matrices may be dramatically different. This suggests obvious problems when
we try to use the covariance or correlation matrices of compositional data to
interpret the relationship between two variables.

1.7.6 Null Correlation difficulty

It is traditional to consider null-correlation a good indicator of independence.
However, in the situations we’ve already pointed out, a sample where the cat-
egories are truly independent will necessarily have negative correlations. It is
possible to calculate the naturally occurring negative correlations which would
occur under an independence assumption and use this to compare with experi-
mental results, but this problem is also fraught with difficulty.

1.8 Alternate approaches to the Composite Es-
timator

A significant effort was made in the attempt to find alternate approaches leading
to a superior successor to the composite estimator. Although every endeavor
lead eventually to a dead-end, the examination was far from exhaustive, and
there is still a good chance that an alternative approach could still be found.
There were three primary directions that I pursued.

1.8.1 Dimensional Reduction

The most obvious means of reducing the linear dependence of the mean esti-
mates is to create a linear transformation of the estimate into a smaller di-
mension. In other words, in a vector x if the elements x1, x2, ..., xm sum to
1, then one could attempt to work with elements x1, x2, ..., xm−1 knowing that
xm = 1−

∑m−1
i=1 xi.

In problems with only one dimension, the solution is easy enough to perform.
However, it becomes nontrivial when dealing with three-dimensional ground
surveys with elements xijk where any one of the indices may be the one category
that has been removed.

1.8.2 Compositional Data Analysis

In his book, Aitchison[2] provides a good approach to dealing with compositional
data–data in the form of normalized vectors representing the composition of
some item. One of the primary examples of compositional data that he gives is
the result of a standard blood test where some proportion of the blood consists
of plasma, another proportion of red blood cells, etc.
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His approach to the dilemma is to transform the data vectors x1, x2, ..., xm by
dividing each element x1 through xm−1 by xm and taking the natural logarithm
of the ratio. The resulting data exhibit a much better gaussian distribution and
the issues of linear dependence are removed.

Unfortunately, the technique cannot be applied to this forest survey data
because of the fact that the sample data vectors are sparse with too many
zero elements. In essence, it becomes impossible to avoid taking logarithms of
zero. Aitchison’s method can only be applied to samples where each category is
guaranteed representation by some nonzero value. (In an example with blood
composition, you will never have a sample with 0% white blood cells.)

1.8.3 Categorical Data Analysis

In many ways the problem of forest population classification appears to lend
itself naturally to a categorical data problem, where the various surveys could
be broken down as 2- or 3-dimensional contingency tables. It is possible that
the entire problem could be rewritten into a loglinear model. This avenue has
not been exhaustively explored, but an initial analysis ran into a number of
stumbling blocks. A formulation of the weighted average of two loglinear models
wasn’t straightforward.

Another problem still exists with all the prominent zero elements. (insert
quick 4x4 table with the 4 sample categories. point out that many of the 16 cells
will probably be empty, and for larger dimension and more categories there will
be far more 0 elements.) In Agresti’s [1] book §7.7, he deals with the problematic
nature of empty cells and sparseness in contingency tables.
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Chapter 2

The ACAS software package

2.1 History of the Early Prototypes

The development of a software implementation for the Composite Estimator
spans almost four years, beginning in early 1994. The first prototype was a
script written by Ray Czaplewski in the Stata programming language. This
script performed the basic operations necessary to implement the Composite
Estimator for a single data set, but was not flexible enough for general use.

The next prototype was developed in Gauss, a matrix programming lan-
guage. The original plan was to distribute the Gauss runtime along with the
Composite Estimator program for people to use throughout the USDA Forest
Service. The prototype was able to perform the basic operations, but it lacked
flexibility. There was a need to be able to customize operations and analyses
to fit various problems. Gauss was a procedural language that required major
rewriting of code each time the order of operations was changed. Some work
went into writing a program that would rewrite sections of Gauss code which
in turn would be run by the Gauss runtime engine. This effort became too
complex and was eventually abandoned.

The nature of the application required a high level of flexibility. Composi-
tional estimates needed to be manipulated in different orders and with many
configurable options. It was quickly realized that an object-oriented approach
was required where classes could be developed to conceptualize compositions
(including the census as a special case) and transformation matrices and vari-
ous statistical reports. It was important to be able to define an arbitrary number
of objects and customize the ways in which they were manipulated.

The C++ programming language was selected to fit these criteria. David
Beach was employed to assist in the implementation of the application’s design in
C++ . The software application was given the name of ACAS as an abbreviation
of the term “accuracy assessment”.
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2.2 ACAS First Iteration (version 1.0)

After spending time looking at commercial C++ matrix libraries it became
obvious that our needs exceeded the available offerings. David Beach began
the development of basic matrix libraries that would perform all the necessary
operations. Some of these libraries were purely mathematical, performing simple
matrix algebra functions. Other libraries performed operations specific to the
application, like creating transformation matrices to map different composition
estimates of different dimensions. In July of 1995 the first 1.0 version of ACAS
was completed. The C++ language proved to be flexible enough to accommodate
all the challenges in flexibility and customization that we encountered.

Appendix C has an exhaustive description of the initial object oriented struc-
ture. A summary of this initial library follows.

Numerical Libraries The first C++ libraries involved defining structures to
manage vectors and arrays. Simple operations like matrix multiplication
were straightforward in their implementation. More complex functions
like singular value decomposition were written using algorithms from Nu-
merical Recipes in C[25].

Mapping between Surveys One of the most difficult tasks involved track-
ing the categorical indices of the sample estimates and their subsequent
composite estimators. Since the x̂ estimates had many zero elements,
only non-zero elements were preserved. Each vector had to maintain its
associated categorical labels, making it possible to construct the linear
transformation matrices between estimates of different dimensions.

Error checking When running various data sets through ACAS many numeri-
cal difficulties occurred. (Closer examination usually identified these prob-
lems with insufficient sample sizes and situations in which categories would
be represented in the census but none of the phases.) A large number of
error checking routines were developed to test results. (For example, when
a generalized inverse was computed basic properties like AA−A = A and
A−AA− = A− would be confirmed.) These tests made it possible to
quickly flag problems so that careful examination of the data could be
made.

Additional Statistics Dr. Czaplewski’s work on the composite estimator in-
cluded the calculation of a “Kappa Statistic” which would provide a mea-
sure of general agreement between different classification systems and con-
ditional probabilities of composition estimates. Routines were developed
to implement the optional output of these statistics.

Confidence Intervals It is difficult for a user to glean any information directly
from a covariance matrix, so composition estimates would be accompanied
by confidence intervals, based on the diagonal elements of the covariance
matrices. Unfortunately, since most elements of the composite estimator
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(or the original sample means) are very close to zero, confidence intervals
based on a gaussian assumption would frequently fall outside of the [0,1]
constraint, creating meaningless results.

We developed in ACAS the option of selecting from a variety for methods
for calculating confidence intervals. In addition to the traditional gaussian
model, an optional beta-binomial model was created which would produce
confidence intervals within the [0,1] confines. This model is further dis-
cussed in Appendix A.

2.3 Going beyond 1.0: Scripting with Tcl

Up to version 1.0 it was intended that the user would provide data in computa-
tions instructions via a customized scripting language. Routines were developed
to parse an input file, interpret its instructions and perform the requested oper-
ations, but this aspect of the application was difficult and took a disproportion-
ate amount of effort. Soon after the release of version 1.0 the Tool Command
Language (TCL) was adopted for the scripting problem. TCL is a scripting
language with a very simple and straightforward syntax. TCL is designed to be
extended where its customized functions can be written in C++ and linked to
the TCL runtime. In essence, it is possible to create TCL commands to perform
the basic ACAS functions, link the ACAS library to the TCL runtime and have
the user write ACAS scripts in TCL.

Further exploration was made into creating a Graphic User Interface for
ACAS using Tcl/Tk. Work went into creating advanced graphical visualization
techniques for analyzing the data. Unfortunately, there were significant limi-
tations with the Tk graphical libraries. An add-on library called BLT showed
some promise for rendering advanced graphical methods, but the library was
buggy, unstable fell into unsupported obscurity.

As both Dave Beach and I left the setting of Colorado State University and
the USDA Forest Service, work was done to stabilize the ACAS code, create a
portable source code that would run under both Linux and the AIX systems of
the Forest Service.

2.4 The Future of ACAS

Over the past few years there have been inquiries into the status and future
of ACAS. At the end of 2002, Dave Beach expressed an interest in resurrecting
ACAS and rewriting it in Python, using the Numerical Python extensions. His
opinion was that a fully-functional rewrite of ACAS could be performed using
highly optimized numerical libraries. We isolated ourselves in a cabin at Red
Feather Lakes and spent a full weekend on the complete rewrite.

To his credit, Dave was right about the flexibility of Python and its speed and
power in development. By the end of the weekend most of the basic functionality
that we’d spent over a year developing with ACAS 1.0 was complete. A couple
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additional evenings made it possible to finish a command parser, and run tests
with sample data sets.

From this point the future of ACAS is uncertain. The framework exists to
move forward in its development, pending developmental funding. However, it
is my belief that the issues discussed in the next section need to be addressed
before any further work is justified.

2.5 Final Evaluation of ACAS and the Composite
Estimator

Many difficulties exist with the theory and application of the Composite Esti-
mator. Most of the data that were processed with ACAS revealed critical flaws–
inadequate sample sizes, over-parameterization, different sampling methods–
which resulted in meaningless results. Nevertheless, it is essential to be able to
quantify some knowledge of the extent of data misclassification, especially in
the analysis and evaluation of different measurement systems[29].

There are still some unexplored avenues in restating the problem as a cate-
gorical analysis problem worth investigation, but there is a good possibility that
the existing Composite Estimator is the best solution to this problem. Given
the high frequency of problems encountered with data processed by ACAS, it
seems prudent to suggest further effort be directed toward developing improved
planning and sample design. By achieving a balance between sample size and
the number of categories, and with early testing of data to assure all samples
represent the same population, the Composite Estimator may provide useful
measures in accuracy assessment. The following are examples of further direc-
tions for this research.

Sample Size and Categorical Dimension The most obvious and frequent
problem with ACAS is the risk of over-parameterization. In our example
we created four simple categories for forest land: hardwood, softwood
shrub, and other. Frequently researchers wish to include as many as ten
or twenty different categories in their analysis. Given their budget and
planned sample size, this is simply unrealistic!

Tools and methodologies might be developed to plan acceptable sample
sizes, including the analysis of preliminary test samples. If the survey
has already been taken, it would be advisable to come up with a known
limit to the number of categories allowed. High correlations between some
categories might suggest ways in which the dimension could be reduced by
collapsing multiple categories into specific fewer categories. Tests should
be explored to determine whether over-parameterization problems still
exist.

Acceptable Sampling Design It is important that the sample selection be-
tween surveys use similar methods. For example, if aerial photography
is going to include flight plans that cover lakes, provisions need to be
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made so the ground survey may also include lakes. A simple hypothesis
test may be used to determine whether the aerial photography and/or
satellite mapping from two surveys (collapsing the vectors into a common
dimension) results in estimates of the same population. In other words

Ho : xphoto = H3xground

Non-gaussian Models Theoretical exploration should be made to see if the
composite estimator may be re-crafted within the auspice of Categorical
Data Analysis. The facts that the original data can be best represented by
contingency tables and that the x̂ estimates resemble the parameter of a
multinomial distribution suggest that a more logical mathematical model
may be appropriate, if only the application can be implemented with a
reasonable level of complexity.

After this work is done, the outlook of the composite estimator and its
application will probably be much brighter. It is still doubtful that useful results
could be obtained by a field-researcher as product end-user. The inclusion of a
trained consulting statistician with an understanding of this specific application
of sample design would be mandatory, as evidenced by the propensity of ACAS
to yield questionable results.
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Appendix A

The Beta-Binomial Model
for Proportional Confidence
Intervals

Introduction

Composition estimates, being normalized vectors with a potentially large size,
have many elements that are extremely close to zero. Their corresponding vari-
ances are often sufficiently large that confidence intervals based on a gaussian
error model fall outside of the [0,1] range. Such confidence intervals are nonsen-
sical and only serve to confuse users of the ACAS application. For this reason,
an alternative model was proposed using a beta-binomial distribution.

The argument went as follows: each element in the composition vectors may
seen to represent the likelihood that given any random sample taken from the
entire population, the probability that the sample would be classified as forest
type i is giving by xi. This suggests that the compositions fall under a multi-
nomial distribution, rather than a multivariate normal. Under this assumption,
a more logical confidence interval can be obtained by using a beta distribution
for the parameter space.

Section A.1 sketches out my first approach to this subject. Section A.2 pro-
poses another approach which looks directly at the distribution of the parameter
p. Section A.5 talks about the method used to find the smallest exact confi-
dence interval, once the parameters a and b have been determined for the beta
distribution.

The legitimacy of this application is hard to defend beyond the logic stated
above. Its pursuit was motivated by the desire to make confidence intervals that
“seemed to make better sense”. Given the amount of fudging required to get
ACAS to provide meaningful results, this application seemed no better or worse
than any of the application design.
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A.1 The “Scaled-Binomial” Confidence Interval

The primary method for calculating confidence intervals is based off a continuous
analogy of a Binomial distribution. Each marginal estimate of a classification
proportion is really created by averaging a large number of such proportion
estimates generated on each sampled unit (plot). Hence, we have a proportion
estimate p which represents one of the parameters from a binomial distribution.
We also have the variance of the parameter estimate.

A.1.1 The Continuous Binomial distribution

If we examine the probability mass function of a binomial distribution, we have

p(x;n, p) =
(

n

x

)
px(1− p)n−x for x = 0, 1, 2, . . . , n (A.1)

There are a few problems involved with applying this distribution to our model.
First, we do not know the appropriate value for n. Next, we are no longer dealing
with discrete parameters, so n is a continuous parameter. Let us construct a new
“continuous binomial” distribution by first noticing that the binomial coefficient
can be expressed in terms of Gamma functions, which are continuous in nature.(

n

x

)
=

n!
x!(n− x)!

=
Γ(n + 1)

Γ(x + 1)Γ(n− x + 1)
(A.2)

Hence, equation A.1 is equivalent to the continuous binomial

f(x;n, p) =
Γ(n + 1)

Γ(x + 1)Γ(n− x + 1)
px(1− p)n−x for 0 ≤ x ≤ n (A.3)

The Beta conjugate prior of the Continuous Binomial

In order to generate a confidence interval for the parameter p, we must first
determine the appropriate shape of the conjugate prior. The likelihood equation
for p is equal to the continuous binomial density function, but with p as the
independent variable and x as a parameter. If we make a change of variables
and introduce two new parameters a and b defined by

a = np + 1
b = n(1− p) + 1 (A.4)

then we get the following function for the distribution of p

f(p; a, b) =
Γ(a + b− 1)

Γ(a)Γ(b)
pa−1(1− p)b−1 for 0 ≤ p ≤ 1 (A.5)

The integral of this function over the range [0, 1] is not equal to one. However,
if we recall the fact that Γ(a + b − 1) = (a + b)Γ(a + b) then we can divide
equation A.5 by (a + b) to get

f(p; a, b) =
Γ(a + b)
Γ(a)Γ(b)

pa−1(1− p)b−1 for 0 ≤ p ≤ 1 (A.6)
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which is the probability density function for a Beta distribution with parameters
a and b. We still do not have enough information to create a confidence inter-
val for p using this distribution because there is no estimate for the binomial
parameter n. We do, however, have the variance of the parameter estimate p.

Finding the parameters a and b for the Beta

Recall that a Beta distribution has variance

σ2 =
ab

(a + b + 1)(a + b)2
(A.7)

If we make the change of variable from a and b to n and p using equation A.4
we get.

σ2 =
(1 + n (1− p)) (1 + n p)

(2 + n (1− p) + n p)2 (3 + n (1− p) + n p)
(A.8)

which simplifies to

σ2 =
(1 + n− n p) (1 + n p)

(2 + n)2 (3 + n)
(A.9)

We know σ2 and p and would like to solve for n. This cannot be done directly,
so it is necessary to use Newton’s Method. Of course, Newton’s Method requires
the derivative of equation A.8 which is given by

dσ2

dn = − (1+n (1−p)) (1+n p)

(2+n (1−p)+n p)2 (3+n (1−p)+n p)2
− 2 (1+n (1−p)) (1+n p)

(2+n (1−p)+n p)3 (3+n (1−p)+n p)

+ (1+n (1−p)) p+(1−p) (1+n p)

(2+n (1−p)+n p)2 (3+n (1−p)+n p)

(A.10)
This equation simplifies to

dσ2

dn
=
−2− 6 n− 2 n2 + 12 n p + 2 n2 p− n3 p− 12 n p2 − 2 n2 p2 + n3 p2

(2 + n)3 (3 + n)2

(A.11)
Once the parameter n has been solved, it is possible to calculate a and b,

giving us the exact distribution of the parameter p. From here it is possible to
generate a confidence interval for p.

A.1.2 Problems which occur with σ2 ≥ 1
12

Notice in equation A.4 that the parameters a ≥ 1 and b ≥ 1. If either a or b is
less than one, the parameter n which represents the corresponding continuous
binomial distribution would have to be negative! This restricts the variance σ2

to values less than 1
12 .

Let’s examine this in another context. In a worst case scenario in which
there is absolutely no data from which to form an estimate p̂ then p could have
equally likely values over the interval (0, 1). This would be the case where the
Beta distribution we were using above was equivalent to a Uniform distribution.
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Such a uniform distribution has a variance of 1
12 . If the estimated variance of

p is greater than that, then the prior distribution begins to resemble that of a
Bernoulli distribution, where p can only take on extreme values of 0 and 1.

A.2 Maximum Likelihood Beta Estimates

Using the argument from section A.1.1, we can see that the likelihood equation
of a binomial model is proportional to a Beta distribution function. The method
used in the last section began with the statistics p̂ and σ̂2

p and came up with
estimates a and b for a (Beta) posterior distribution of the parameter p.

The method is ostensibly contrived because instead of beginning with an
explicit Binomial distribution Bin(n, p̂) of the data, the parameter n has to be
estimated with the constraint that the subsequent beta likelihood has a variance
equal to σ̂2

p.
A more direct solution to this problem is to find the maximum likelihood

equations for parameters a and b and use those to estimate the distribution of
the parameter p. This approach is difficult to implement, and it suffers from the
problem that it requires the sufficient statistics

∑
ln p̂i and

∑
ln(1− p̂i). The

only statistics we have to work with, however, are p̄ =
∑

p̂i and σ̂2
p = Var(p̂).

This makes maximum likelihood impractical. However, it can be usefull in
evaluating other approaches to this problem.

Johnson & Kotz[16] state the maximum likelihood estimators of a and b as
the pair of equations

Ψ(â)−Ψ(â + b̂) =
1
n

∑
ln pi (A.12)

Ψ(b̂)−Ψ(â + b̂) =
1
n

∑
ln(1− pi) (A.13)

where Ψ(·) is the digamma function

Ψ(x) =
Γ′(x)
Γ(x)

(A.14)

The solution of these equations must be done numerically.

A.3 Method of Moments Estimation

Probably the most logical (and certainly the most straight-forward) approach
to determining the parameters for the Beta distribution uses the moments–
specifically the sample mean and variance–to solve for the parameters a and b.
Recall that a random variable p ∼ Beta(a,b) has mean and variance given by

p̄ =
a

a + b
(A.15)

σ2
p =

ab

(a + b + 1)(a + b)2
(A.16)
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These equations can be solved to find explicit solutions for a and b in terms of
E(p) and Var(p).

a =
[
p̄(1− p̄)

σ2
p

− 1
]

p̄ (A.17)

b =
[
p̄(1− p̄)

σ2
p

− 1
]

(1− p̄) (A.18)

A.4 Comparison of Three Methods

To compare the three methods (estimate Binomial n, MLE, and Method of Mo-
ments) I generated a set of random variables (X1, . . . , X10) independent iden-
tically distributed Bin(100,0.7). From these data, I calculated p̂1, . . . , p̂10 in
addition to the sample mean and variances p̄ = 0.721 and s2

p = 0.0013211. The
following table gives the estimates for a and b, including the mean and variance
of a Beta random variable with those parameters.

Maximum Likelihood Method of
Scaled Binomial Estimates Moments Estimates

a 109.316 110.653 109.062
b 42.9142 42.8638 42.2029

mean 0.7181 0.7208 0.7210
variance 0.0013211 0.0013025 0.0013211

A.5 Exact, Smallest Confidence Interval gener-
ation

An iterative method is used to generate the smallest possible confidence inter-
vals for the beta prior distribution. The process is iterative, so its drawback
is increased processing time. The algorithm which I’ve developed combines
Newton’s Method and Bisection to converge upon the solution as quickly as
possible.

The routine betaCI endeavors to find a value for y such that the two values
xL and xH (where y = beta(xL, a, b) = beta(xH , a, b)) create bounds for an
exact CI level confidence interval.
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Appendix B

MLE Equivalence to the
Kalman Filter Solution

This appendix will demonstrate the equivalence between the statement of the
Composite Estimator in the Kalman Filter context and its statement as a Max-
imum Likelihood Estimation problem. In order to simplify this exercise, we will
use slightly different notation.

B.1 Maximum Likelihood Estimation Approach

Let x and y be multivariate normal random variables of dimension p and q
respectively (p > q) where x ∼ MVN(µ,ΣX) and y ∼ MVN(Hµ,ΣY ). H
is a linear transformation matrix. We wish to estimate µ common to these
distributions. The distributions of these random variables is given by

f(x;µ,ΣX) ∝ 1
(2π)p/2

exp
{
−1

2
(x− µ)′Σ−1

X (x− µ)
}

(B.1)

g(y;Hµ,ΣY ) ∝ 1
(2π)q/2

exp
{
−1

2
(x− µ)′Σ−1

Y (y − µ)
}

(B.2)

The likelihood equation given x and y and its partial derivative are then

`(µ|x,y) = −1
2

{
(x− µ)′Σ−1

X (x− µ) + (y −Hµ)′Σ−1
Y (y −Hµ)

}
(B.3)

∂

∂x
`(µ) = (Σ−1

X x + H′Σ−1
Y y)− (Σ−1

X + H′Σ−1
Y H)µ (B.4)

A solution will be found by solving ∂
∂µ`(µ) = 0 or

µ̂MLE = (Σ−1
X + H′Σ−1

Y H)−1(Σ−1
X x + H′Σ−1

Y y) (B.5)
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Our aim is to prove that this form is algebraically equivalent to the Kalman
Filter estimate (the form used in our Composite Estimator) which can be written
in its expanded from as

µ̂CE = x + ΣXH′(ΣY + HΣXH′)−1(y −Hx) (B.6)

In order to do this, we will expand equations B.5 and B.6 to linear combi-
nations of x and y.

From equation B.5 we can expand to

µ̂MLE = (Σ−1
X + H′Σ−1

Y H)−1(Σ−1
X x + H′Σ−1

Y y)
= (Σ−1

X + H′Σ−1
Y H)−1Σ−1

X x +
(Σ−1

X + H′Σ−1
Y H)−1H′Σ−1

Y y (B.7)

And we can expand equation B.6 to

µ̂CE = x + ΣXH′(ΣY + HΣXH′)−1(y −Hx)
= x + ΣxH′(ΣY + HΣXH′)−1y −ΣXH′(ΣY + HΣXH′)−1Hx

= (I−ΣXH′(ΣY + HΣXH′)−1H)x +
ΣXH′(ΣY + HΣXH′)−1y (B.8)

Notice that these two equations B.7 and B.8 are written as linear combina-
tions of x and y. If we can prove that the coefficients of x are equal to each
other and the same for the coefficients for y, our job is complete. Therefore we
will tackle proving the following two equalities

(Σ−1
X + H′Σ−1

Y H)−1Σ−1
X = I−ΣXH′(ΣY + HΣXH′)−1H (B.9)

(Σ−1
X + H′Σ−1

Y H)−1H′Σ−1
Y = ΣXH′(ΣY + HΣXH′)−1 (B.10)

We will start with B.10. Setting the coefficients of y in equations B.7 and
B.8 we have

(Σ−1
X + H′Σ−1

Y H)−1H′Σ−1
Y = ΣXH′(ΣY + HΣXH′)−1

(Σ−1
X + H′Σ−1

Y H)−1H′Σ−1
Y (Σ−1

X + H′Σ−1
Y H) = ΣXH′

H′Σ−1
Y (ΣY + HΣXH′) = (Σ−1

X + H′ΣY H)ΣXH′

H′Σ−1
Y ΣY + H′ΣY HΣXH′ = Σ−1

X ΣXH′ + H′ΣY HΣXH′

H′ + H′ΣY HΣXH′ = H′ + H′ΣY HΣXH′ (B.11)

We will prove equation B.9 in the same manner. In the following proof we
will define the following substitution variable

V = (ΣY + HΣXH′)
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Now we can proceed from equation B.9

(Σ−1
X + H′Σ−1

Y H)−1Σ−1
X = I−ΣXH′V−1H

(Σ−1
X + H′Σ−1

Y H)−1 = ΣX −ΣXH′V−1HΣX

I = ΣX(Σ−1
X + H′Σ−1

Y H)−ΣXH′V−1HΣX(Σ−1
X + H′Σ−1

Y H)
I + ΣXH′Σ−1

Y H−ΣXH′V−1H−ΣXH′V−1HΣXH′Σ−1
Y H = I

ΣXH′Σ−1
Y H−ΣXH′V−1H−ΣXH′V−1HΣXH′Σ−1

Y H = 0
H′ [Σ−1

Y −V−1 −V−1HΣXH′Σ−1
Y

]
H = 0 (B.12)

Note at this point that for any H, if Q = 0 then H′QH = 0 so we can
conclude this proof by showing that Q = 0 hence

Σ−1
Y −V−1 −V−1HΣXH′Σ−1

Y = 0
I−V−1ΣY −V−1HΣXH′ = 0

I−V−1(ΣY + HΣXH′) = 0
I−V−1V = 0 (B.13)
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Appendix C

ACAS 1.0 C++ Objects

This appendix comes from the original ACAS Version 1.0 documentation. Its
purpose is to outline the initial object-oriented structure of the ACAS application
system. After the 1.0 version these objects were left intact, and development
proceeded to the process of developing a scripting language to allow a users to
use these methods flexibly.

Traditional programming focuses on the procedures and functions which
manipulate data. The object oriented programming paradigm introduces a con-
siderable change. The data becomes the focus of the program, and the allowable
operations to the data are attached to the data. In “object oriented” terminol-
ogy, the types of data are called classes, the allowable operations on those data
are known as methods, and particular instances of classes (data) are known as
objects.

The rest of this section explains many of the classes used in ACAS as well as
the methods associated with those classes. It is important to point out that the
end user of the ACAS product does not need to understand the material listed
in this chapter!

The ACAS system utilizes a number of specialized data classes. Each consists
of a numerical matrix and some indexing matrices. An indexing matrix assigns
categorical strings to each row of the numerical matrix. The following sections
will demonstrate this system.

A generic C++ Class object has been created for both numerical and string
matrices. [3] The numerical matrix has been constructed with standard oper-
ations defined, like matrix (and scalar) multiplication, singular-value decom-
position, generalized (Moore) matrix operations and much more. The string
matrices have been constructed with operations which perform row sorting op-
erations. From these basic components, the more complex objects are created.
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C.1 The Numeric Matrix Class

Perhaps the most basic building blocks of the C++ class system which has been
constructed for ACAS is the numeric matrix class. This class of object dynami-
cally stores a matrix of floating point variables in memory and allows standard
operations to be performed on it.

C.1.1 Description of Methods

The numeric matrix class in implemented as class which uses strictly long double
precision math operations on its elements. This means ACAS will use the most
precise possible data type, given the architecture of the machine on which it is
running. On most modern IBM PC or compatable machines, the long double
math operations are preformed by the internal math coprocessor, which uses
80 bit precision (10 bytes). On some UNIX systems, the precision of the long
double type is 128 bits (16 bytes).

The defined methods on the numeric matrix include dimensioning (to de-
clare the size of the matrix), printing, and copying. Arithmetic operations
are defined for matrices including matrix addition, subtraction, multiplication,
scalar multiplication, j matrix addition, and j matrix subtraction. A handful of
other useful methods have been defined for the numeric matrix including singu-
lar value decomposition, generalized (or Moore) inverse, zero matrix creation,
identity matrix creation, row extraction, column extraction, and horizontal and
vertical concatenation. Internally, this class is referred to as an “Nmatrix”.

C.1.2 Examples

Following is an exhastive list of the defined Matrix operations with small exam-
ples included:

(Assume one, two, three, A, B, and C are numeric matrices, x is a long
double, and that cout is an ostream.)

Dimensioning Methods
dimension to size one.dim(4, 5);

redimension to size one.redim(5, 4);

Note: This has strange effects and only works when the total number of elements is preserved.
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Assignemnt and Arithemetic Methods
equality assignment one = two;

element access (one based) one(3, 3) = 4.5;

j-matrix addition one = two + 3;

one = 3 + two;

one += 3;

matrix addition one = two + three;

one += two;

j-matrix subtraction one = two - 3;

one = 3 - two;

one -= 3;

matrix subtraction one = two - three;

one -= two;

scalar multiplication one = two 4;

one = 4 two;

one = 4;

matrix multiplication one = two three;

one = two;

scalar “division” one = two / 3;

one /= 3;

one = 3 / two;

matrix “division” (all using ginv) one = two / three;

one /= two;

Note: The command one = 3 / two replaces one(i, j) = 3 / two(i, j) for all i and j in
the matrix.

Concatination, Splitting, and Swapping Methods
horizontal concatenation one = two | three;

one |= two;

vertical concatenation one = two & three;

one &= two;

column extraction one = two.cols(keyof(1, 2)); 1

row extraction one = two.rows(keyof(1, 2));

column swap one.colswap(2, 4);

row swap one.rowswap(3, 2);

transposition (in place) one.t();

(functional construction) one = t(two);

Note: Read on to learn more about “Keys” and the keyof function.

Summation and Normalization Methods
column sum x = one.col sum(3);

row sum x = one.row sum(5);

sum of all elements x = sum(one);

column normalization x = one.col norm(3);

row normalization x = one.row norm(5);

Note: In normalization methods, the normalization factor is stored in x.
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Absolute Value, Trace, Square, and Square Root Methods
elementwise absolute value one = abs(two);

(in place) one.abs();

sum of absolute value x = sumabs(one);

trace of a matrix x = trace(one);

square of a matrix one = sqr(two);

(in place) one.sqr();

transpose-square A−A one = trsqr(two);

(in place) one.trsqr();

square-transpose AA− one = sqrtr(two);

(in place) one.sqrtr();

Cholesky square root one = sqrt(two);

(in place) one.sqrt();

SVD and Generalized Inverse Methods
singular value decomposition one.svd(A, B, C);

generalized inverse (in place) one.ginv();

(functional construction) one = ginv(two);

Output Methods
output (with field width) one.out(8, cout);

(single row) one.outrow(3, 8, cout);

(part of row) one.outrowpart(3, 2, 5, 8, cout);

(single row, integer format) one.outintrow(3, 8, cout);

(part of row, integer format) one.outintrowpart(3, 2, 5, 8,

cout);

Special Matrix Setting Methods
identity matrix one.I(5);

(using previous dimensions) one.I();

one = I(5);

j matrix one.J(5, 5);

(using previous dimensions) one.J();

one = J(5, 5);

zero matrix one.Z(5, 5);

(using previous dimensions) one.Z();

one = Z(5, 5);

Zero Rounding and Equality Methods
round near zero values one.round near zeros(1.0e-6);

equality tests if(one == two) {· · ·}
if(one != two) {· · ·}

(within a tolerance) if(tol equal) {· · ·}

Kronecker Product Methods
Kronecker (tensor) product one = kronecker(two, three);

Number of Rows and Columns Methods
number of rows if(one.nrows() > two.nrows())

{· · ·}
number of columns if(one.ncols() < two.ncols())

{· · ·}

Matrix Destruction Methods
free memory used by matrix one.destroy();
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C.2 The String Class

Although ACAS formerly had a string class which was developed along with the
main program, as time went on, it became necessary to program in more and
more features. We came to the realization that it is not worth it to reinvent the
wheel. ACAS now uses the string class described in the GNU G++ [19] library.

C.3 The String Matrix Class

The string matrix class defines a matrix of strings. This is used in the construc-
tion of categorical classifications of sampled data. One of the most outstanding
features about a string matrix is it’s ability to perform a (fast) alphabetical
heapsort. In recent development stages, this has made it easier to alphabetize
large lists of data quickly. In addition to this, a method has also been added
which sorts a list and reduces it to its unique elements. This method is referred
to as reduction of a list. Reduction is used in many places in the ACAS main
code.

C.3.1 Description of Methods

As with the matrix, the string matrix shares the methods of dimensioning,
copying, printing, extracting rows and columns, and concatenation with other
string matrices. Internally this class is referred to as an “Smatrix.”

C.3.2 Examples

Following is a list of the defined Smat operations with examples included:
(Assume one, two, and three are string matrices, that a key is a preloaded

key, and that cout is an ostream.)

Dimensioning Methods
dimension to size one.dim(4, 5);

redimension to size one.redim(5, 4);

Equality and Elemental Access Methods
equality assignment one = two;

element access (one based) one(3, 3) = 4.5;

Concatination, Splitting, and Swapping Methods
horizontal concatenation one = two | three;

one |= two;

vertical concatenation one = two & three;

one &= two;

column extraction one = two.cols(keyof(1, 2));

row extraction one = two.rows(keyof(1, 2));

transposition one = t(two);

(in place) one.t();

row swap one.rowswap(2, 3);

column swap one.colswap(3, 1);
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Output Methods
terminal output (with field width) one.out(8, cout);

(single row) one.outrow(3, 8, cout);

(part of row) one.outrowpart(3, 2, 5, 8, cout);

Special Matrix Setting Methods
blanking a matrix one.blank(4, 5);

(using previous dimensions) one.blank();

one = blank(4, 5);

Sorting and Reduction Methods
alphabetical heapsort one = sort(two, keyof(1, 4));

(in place) one.sort(keyof(1, 4));

alphabetical reduction one = reduce(two, a key);

(in place) one.reduce(a key);

Number of Rows and Columns Methods
number of rows if(one.nrows() > two.nrows())

{. . .}
number of columns if(one.ncols() < two.ncols())

{. . .}

String Matrix Destruction Methods
free memory used by matrix one.destroy();

C.4 The Phase Data Class
This object contains the raw data from the file input. Consider each row to be a record of
data. Each record represents a unique identification of inventoried forest. The first two or
three (really an arbitrary number) columns represent categorical classifications of the sample,
ie. mapped classification, photo-interpretation classification, etc. The next column contains
the PSU (primary sampling unit) which represents which sampled unit of forest was measured.
These columns together form a single string matrix which uniquely identifies each record of
the actual data.

The last column is really an n×1 element numerical matrix which represents the number of
sampling units that fall under the classification specified by the same row of the corresponding
string matrix. Together, the string matrix (in this example, the Mapped and Ground classi-
fications and the PSU identifier) concatenated with the numerical matrix (the last column)
forms the Phase Data Class.

PSU COUNT
Mapped1 Ground1 1 3
Mapped3 Ground3 1 7
Mapped4 Ground2 3 2
Mapped2 Ground2 3 6
Mapped1 Ground1 5 7
Mapped2 Ground3 7 2
Mapped4 Ground1 7 2
Mapped2 Ground3 8 4
Mapped1 Ground1 8 16

C.4.1 Description of Methods
The Phase Class includes methods which allows it to create itself from a buffer (listing of string
data), and a number of categorical descriptors (also passed to it from the sending code). With
this data, the phase class can determine how many records can be made from the buffer, and
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create those records internally. If the Phase Class senses that the buffer information is corrupt
(usually from an incorrect number of entries), an error is flagged and execution is aborted.

Another feature of the Phase Class is its ability to sort and reduce itself. Once the Phase
Class has loaded its information, it can reduce itself, adding the count values on duplicate
entries.

Finally, the Phase Class can tabulate itself, creating a table (see next class) with the
unique categorical descriptors on the left hand side of the table, and the unique PSU’s above
the table. Each count is then placed in its appropriate position in the table. The Table Object
is then returned. Internally, the Phase Class is referred to as a “Phase.”

C.4.2 examples
Here is an exhaustive list of external methods allowed on the Phase data type:

(Assume pha is a phase object, that tab is a table object, that the data is a dataread
object attached to a file with category #PHASE I and that cout is of type ostream.)

Creation from a Datafile
create a phase object pha.create(the data,

‘‘#PHASE I’’);

Itemwise Reduction and Combination
reduce to unique entries pha.reduce();

Output Methods
output to ostream pha.out(cout);

Tabulation of Data
make table from phase tab = pha.tabulate();

Phase Destruction
free memory used by phase pha.destroy();

C.5 PSU Ratio Reduction Matrix
The Phase Data object can be reduced to another important structure. Notice in the next
table the rows of this matrix are uniquely specified by combinations of the various Mapped
and Ground classifications. This example is arbitrary. There can be more than just two types
of classification. For example, there could be three columns representing Mapped, Ground,
and Surveyed classifications.

PSU Identifier
1 3 5 7 8

Mapped1 Ground1 0.30 0 1.00 0 0.80
Mapped2 Ground2 0 0.75 0 0 0
Mapped2 Ground3 0 0 0 0.50 0.20
Mapped3 Ground3 0.70 0 0 0 0
Mapped4 Ground1 0 0 0 0.50 0
Mapped4 Ground2 0 0.25 0 0 0

Notice that sum of each column is equal to 1. If we instead sum the rows we get a measure
of forest population that falls under each possible classification.

35



C.5.1 Description of Methods
Like many of the other classes in ACAS, the ratio reduction matrix has the a method to
dimension itself (for on-the-fly creation), as well as methods to print and copy itself. The
most impressive feature of the ratio reduction matrix, however, is the ability to create a ratio
vector (see next class) class from the data existing in the table. In this process, the table
creates both the ratio vector (from the row normalizations of the counts in the matrix), but
also the associated variance-covariance matrix. The created ratio is a separate object, and is
returned as a result of this process. Internally, the ratio reduction matrix class is referred to
as a “Table.”

C.5.2 Examples
Due to a lack of time, no examples can be listed in the manual. Examples for the remaining
ACAS classes will be added as time permits, and future versions of the documentation will be
released.

C.6 Categorical Ratio Vector
If we take the sums of the rows from a PSU Ratio Reduction Matrix and normalize them
(divide each by the number of unique PSU Identifiers) we get a vector of ratios, where each
element describes exactly what proportion of the total population falls under each forest
classification. The Categorical Ratio Vector consists of a string matrix (used to identify
a specific forest classification), a numerical matrix — really a vector — which represents
the estimated ratios, and a covariance matrix which estimates the covariances between the
individual categories. These three objects are separated by double-lines in the following table.

A significant property of the “ratio object” is that the estimated ratio always has a
corresponding covariance matrix. As new ratios are made — either by reducing categories
or by composite-estimation — their corresponding covariance matrices are simultaneously
calculated.

Mapped1 Ground1 0.42 0.17 -0.06 -0.03 -0.02 -0.04 -0.02
Mapped2 Ground2 0.15 -0.06 0.09 -0.02 -0.02 -0.02 0.03
Mapped2 Ground3 0.14 -0.03 -0.02 0.04 -0.02 0.04 -0.01
Mapped3 Ground3 0.14 -0.02 -0.02 -0.02 -0.08 -0.01 -0.01
Mapped4 Ground1 0.10 -0.04 -0.02 0.04 -0.01 0.04 -0.01
Mapped4 Ground2 0.05 -0.02 0.03 -0.01 -0.01 -0.01 -0.01

C.6.1 Description of Methods
The categorical ratio vector has very few sophisticated internal methods. This is because the
ratio vector is created by a Table object (the ratio vector lacks a sophisticated method to
create itself), and because all major operations involving ratio vectors are methods of the
transformation matrix (see next class). The ratio vector has only the very basic abilities of
ACAS objects. It has methods to dimension itself, print itself (and print diagnostic warnings,
reports and statistics), copy itself, and access some of its internal components. Internally this
class is referred to as a “Ratio.”
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