
Uncovering the Power of
Option, Either and Try

Scala for Beginners Series

Thursday, February 11, 2021

Why Scala?

ü Write clean, concise, powerful code — less boilerplate

ü Fast development, prototyping

ü Easier to write robust, fault-tolerant applications

ü Wizards use it

2Copyright (C) 2021 Murray Todd Williams

Functional Programming

…a programming paradigm where programs are constructed by
applying and composing functions. It is a declarative programming
paradigm in which function definitions are trees of expressions that
map values to other values, rather than a sequence of imperative
statements which update the running state of the program.

Wikipedia

int x = 0;
while (data.ready()) {

int a = data.next();
if (a > 0) x += a * a;

}

data.filter(_ > 0)
.map(a => a * a)
.sum

3Copyright (C) 2021 Murray Todd Williams

Quick advice for beginners: dump “var”

var x: Int = 1 // 1
x += 3 // now 4

val x: Int = 1
x += 3
• error: reassignment to val

Scala has two types of variable declarations:

If you really want to learn Scala, don’t let yourself ever use var. It will seem incredibly hard
at first. It may even seem impossible. (But it isn’t!) Eventually, your brain will make the
paradigm shift.

One hint: in some seemingly sticky situations, you’ll have to use recursion. It may seem weird,
but don’t fight it. You can indeed evict the evil vars!

4Copyright (C) 2021 Murray Todd Williams

Writing robust, fault tolerant code

Java’s NullPointerException is about as popular and notorious
as the old BSOD.
How does Scala avoid it?

• All functions must return something (whatever type they declare)
• Variables (vals) don’t get defined with uninitialized state
• Functional programmers consider “unhappy paths”

5Copyright (C) 2021 Murray Todd Williams

Option[T]

This is the easiest typeclass to understand:

val name: Option[String] = Some("Murray")
val name: Option[String] = None

It lets you consider cases where you may or may not have a value.
Consider looking up a name from a user database. What if the user
ID can’t be found?

def lookupName(id: String): Option[String]

6Copyright (C) 2021 Murray Todd Williams

Option is found throughout Scala library

scala> val users = Map(1 -> "Alley", 2 -> "Sam")
scala> users.get(1)
val res0: Option[String] = Some(Alley)

scala> users.get(3)
val res1: Option[String] = None

scala> users(3)
java.util.NoSuchElementException: key not found: 3
at scala.collection.immutable.Map$Map2.apply(Map.scala:298)
... 32 elided

7Copyright (C) 2021 Murray Todd Williams

Try[T]

This is next-most-natural way to handle things:

val name: Try[String] = Success("Murray")
val name: Try[String] = Failure(new Exception(…))

If you’re working with Java code or APIs where exceptions can be
thrown (even simple IOExceptions) you can wrap it in a Try call.

Try(db.lookup(name))

8Copyright (C) 2021 Murray Todd Williams

Either[L,R]

Strictly, an Either typeclass lets you have one of two types.
def getAge(a: Int): Either[String,Int] =
if (a < 16)
Left("Renter is not old enought to drive.")

else Right(a)

scala> getAge(10)

val res0: Either[String,Int] = Left(Renter is not old enought to drive.)
scala> getAge(20)
val res1: Either[String,Int] = Right(20)

Conventionally, consider L to be the “unhappy path” and R to be the
“happy path”. (Pneumonic: think happy as what’s “right”)

9Copyright (C) 2021 Murray Todd Williams

It can’t be too
hard to use…

I think I
get the gist

of this.

10Copyright (C) 2021 Murray Todd Williams

Let’s try to apply Option to a typical situation…
scala> val users = Map(1 -> "Alley", 2 -> "Sam")

scala> val greeting = if (users.contains(1)) { "Hello " + users(1) }
val greeting: Any = Hello Alley

scala> val greeting = if (users.contains(1)) { "Hello " +
users.get(1) } else "Don't know"

val greeting: String = Hello Some(Alley)

scala> val greeting = if (users.contains(1)) { "Hello " +
users(1) } else "Don't know"

val greeting: String = Hello Alley

scala> val greeting = if (users.contains(1)) { Some("Hello " +
users(1)) } else None

val greeting: Option[String] = Some(Hello Alley)

11Copyright (C) 2021 Murray Todd Williams

Let’s try something more realistic
case class Contact(id: Int, name: String, phone: Option[String],

email: Option[String], friendIds: List[Int]) {
import Contact._
/*
* Send an email to friends, inviting to join
* @return List of successfully sent emails
*/
def inviteFriends: List[Int] = ???

}

object Contact {

def sendEmail(email: String): Boolean = ???

def dbLookup(id: Int): Try[Contact] = ???

}

12Copyright (C) 2021 Murray Todd Williams

Imperative (non-functional) approach
def inviteFriends(friendIds: List[Int]): List[Int] = {

var successes: List[Int] = List.empty

for (id <- friendIds) {
// lookup id from database
// if you can find it and it’s defined, send an email
// if it was successful, add the id to the successes list

}

successes
}

13Copyright (C) 2021 Murray Todd Williams

Functional approach

Approach:
Start with a list of friend IDs to try
End up with a list of friend IDs from successful emails

Functional strategy:
Apply an operation (lookup & send) to each item in the list,
converting it into a success.

friendIds.map(id => lookupAndSendWithSuccess(id))

This is sort of what we want. We really want to shorten the list to
only have successful deliveries, but let’s not worry about that yet…

14Copyright (C) 2021 Murray Todd Williams

First “functional” iteration
def inviteFriends: List[Int] = {

val successes = friendIds.map { id =>
dbLookup(id) match {

case Failure(_) => None
case Success(friend) => {

friend.email match {
case Some(email) => if (sendEmail(email)) Some(id) else None
case None => None

}
}

}
}
??? // success is now of type List[Option[Int]]

}

Happy
Path 1

Happy
Path 2

Happy
Path 3Unhappy 1

Unhappy 2

Unhappy 3

15Copyright (C) 2021 Murray Todd Williams

Yuck!

Can I just keep doing
imperative

programming?

Please!

You said Scala was
pretty, clean and

succinct!

16Copyright (C) 2021 Murray Todd Williams

“Map” to the rescue!

Option[T].map(f: T => U) becomes Option[U]

Try[T].map(f: T => U) becomes Trt[U]

Either[L,R].map(f: R => S) becomes Either[L,S]

Let’s just write code snippets that
focus on the ”happy paths”

17Copyright (C) 2021 Murray Todd Williams

“Map” to the rescue!

friend.email match {
case Some(email) => if (sendEmail(email)) Some(id) else None
case None => None

}

friend.email.map(e => sendEmail(e))

friend.email.map(sendEmail)

Let’s just write code snippets that
focus on the ”happy paths”

We get to think of e as a String (email)
rather than an Option[String]

To apply a function that only takes the
one parameter, you can simplify by just
supplying the function name.

18Copyright (C) 2021 Murray Todd Williams

Second “functional” iteration

def inviteFriends: List[Int] = {

val successes = friendIds.map { id =>
dbLookup(id).map { contact =>
contact.email.map { address =>
sendEmail(address)

}
}

}

??? // successes is now of type List[Try[Option[Boolean]]]
}

Can I just keep doing
imperative programming?

This still doesn’t
look clean!

How do I work with a List of
Try[Option[Boolean]] ??

19Copyright (C) 2021 Murray Todd Williams

Boxes within boxes! (Turtles all the way down)

Let’s start with 3 “safe” functions, each of which may or may not
yield a successful transformation.

f: A => Option[B]
g: B => Option[C]
h: C => Option[D]

We want to apply these in order, like f(x).map(g).map(h), but we don’t
want Option[Option[Option[D]]], we just want Option[D]

20Copyright (C) 2021 Murray Todd Williams

“FlatMap” to the rescue!
scala> def getName(id: Int): Option[String] = users.get(id)
def getName(id: Int): Option[String]

scala> val id: Option[Int] = Some(2)
val id: Option[Int] = Some(2)

scala> id.flatMap(getName)
val res3: Option[String] = Some(Sam)

scala> val id: Option[Int] = Some(3)
val id: Option[Int] = Some(3)

scala> id.flatMap(getName)
val res2: Option[String] = None

21Copyright (C) 2021 Murray Todd Williams

Think of Option, Try and Either as “Boxes”

T T T

Option[T]
Some[T] or

None

Try[T]
Success[T] or

Failure[E]

Either[S,T]
Right[T] or

Left[S]
22Copyright (C) 2021 Murray Todd Williams

All use “map” to apply functions to their
contents.

f(t)

Option[T]
Some[T] or

None

Try[T]
Success[T] or

Failure[E]

Either[S,T]
Right[T] or

Left[S]

f(t) f(t)

(The functions are ignored if the boxes are empty)

23Copyright (C) 2021 Murray Todd Williams

All use “flatMap” for functions that would
result in nested boxes.

t =>

(The functions are ignored if the boxes are empty)

f(t)
f(t)

flatMap only works if the boxes are
the same, so Options inside Options

24Copyright (C) 2021 Murray Todd Williams

For multiple flatMap to work, keep the
boxes the same!

case class User(id: Int, email: Option[String])
def findUser(id: Int): Option[User]
def sendEmail(email: User): Option[String] // None if email fails

val sent = findUser(id).flatMap(_.email).flatMap(sendEmail)
send will be of type Option[String]

25Copyright (C) 2021 Murray Todd Williams

Trick #1: Quick Convert Try[T] to Option[T]

case class User(id: Int, email: Option[String])
def findUser(id: Int): Try[User]
def sendEmail(user: User): Option[Int] // None if email fails

val sent = findUser(id).toOption
.flatMap(_.email).flatMap(sendEmail)

26Copyright (C) 2021 Murray Todd Williams

Remember how we mapped on List?

T T T T
TTList is just another type of

box, except it doesn’t hold
zero or one item of type T…

… it holds zero or more items
of type T.

Looks more like an egg
carton than a box!

27Copyright (C) 2021 Murray Todd Williams

Remember how we mapped on List?

T T T T
TT

”map” applies a function to
each of the items

If your function generates its
own lists, flatMap “flattens”

them!scala> val myList = List(3,2,1)
val myList: List[Int] = List(3, 2, 1)

scala> myList.map(x => List.fill(x)(x))
val res0: List[List[Int]] = List(List(3, 3, 3), List(2, 2), List(1))

scala> myList.flatMap(x => List.fill(x)(x))
val res1: List[Int] = List(3, 3, 3, 2, 2, 1)

28Copyright (C) 2021 Murray Todd Williams

Options are also Lists!

Remember how we have to keep the ”boxes” the same for flatMap to
work? Well, if you have an Option[T], it doubles as a List[T] with
either zero (None) or one (Some(t)) elements!

val friends: List[Contact] = friendIds.flatMap(id => dbLookup(id).toOption)
val knownEmails: List[String] = friends.flatMap(_.email)

29Copyright (C) 2021 Murray Todd Williams

We’re almost done!

def inviteFriends: List[Int] =
friendIds
.flatMap(id => dbLookup(id).toOption
.flatMap(contact => contact.email)
.filter(sendEmail).map(_ => id))

That’s not so bad, and I
do have all the built-in

safety stuff...

but I’m still not sold.

30Copyright (C) 2021 Murray Todd Williams

Introducing For-comprehensions
def inviteFriends: List[Int] =
friendIds
.flatMap(id => dbLookup(id).toOption
.flatMap(contact => contact.email)
.filter(sendEmail).map(_ => id))

def inviteFriends: List[Int] = {
for {
id <- friendIds
contact <- dbLookup(id).toOption
e <- contact.email
status = sendEmail(e)
if status

} yield(id)
}

31Copyright (C) 2021 Murray Todd Williams

Looking at the syntax in-depth

These are flatMap operations
<-

A simple map (not flatMap) is represented by =
”if” statements translate to .filter statements

Wow.

Whatever type of Box we
start with dictates the rest
of the Boxes

32Copyright (C) 2021 Murray Todd Williams

def inviteFriends: List[Int] = {
for {

id <- friendIds
contact <- dbLookup(id).toOption
e <- contact.email
status = sendEmail(e)
if status

} yield(id)
}

Summary

• If you’re going to learn FP, start with banishing “var”
• Everything is a composition of functions
• Rather than iterating on lists, use “map” and “filter” and just

transform them through your various stages
• Handle potential ‘issues’ with Option, Try or Either
• Operate on their contents by using ”map” and focusing on the

happy path
• FlatMap keeps you from boxing (nesting) your boxes
• for-comprehensions create super-clean syntax for all of this

Copyright (C) 2021 Murray Todd Williams 33

Unveiling my Evil Master Plan…

Copyright (C) 2021 Murray Todd Williams 34All your base are belong to us

You just
learned about
Monads

A monad is a kind of typeclass that “boxes” any
other type

It has .map that applies functions to the
contents of the boxes

It has .flatMap for functions that create their
own boxes in order to avoid nesting problems

Option, Try, Either and Future are good examples
of Monads

They isolate “pure functions” from problematic
contexts like asynchronous operations,
exception handling, missing data, etc.

