
ADVANCED SCALA: IMPLICITS
DETANGLING THREE OFTEN-CONFUSING FEATURES AND LEARNING HOW TO
SUPERCHARGE YOUR CODE.

Murray Todd Williams
© 2020 All rights reserved

Murray’s guide on the best way to learn something:

• Read about it

• Try to use it everywhere (over-use it)

• Throw lots of code away and understand when it’s really appropriate

• Don’t get depressed: good learning is always messy

• Try teaching it to someone else

IMPLICITS: THE GOOD AND THE BAD

GOOD:

• Brief, succinct code. Let the compiler write
your boilerplate when possible.

• Powerful ability to design extensible
functionality

• Includes a sort of Dependency Injection

• Enables things like Scalaz & Cats (advanced
Scala libraries that wizards use)

BAD:

• “implicit” can refer to 3 different things, so
it gets confusing.

• The easiest one to understand (implicit
conversions) can cause the most problems.

• Scala 3 (Dotty) changes this by renaming
and redesigning.

THE THREE IMPLICITS

1. Implicit Conversion

2. Implicit Classes

3. Implicit Parameters

IMPLICIT CONVERSION (USE WITH CARE!!!)

Problem: you have class A when you really need class B (and you’d like the
compiler to do some magic for you)

scala> case class Color(name: String)
scala> val c: Color = "Red"

error: type mismatch;
found : String("Red")
required: Color

Solution: Define a function that converts type A to type B (i.e. that converts
what you have into what you need) and declare it as implicit.

implicit def colorFromString(name: String): Color = name.toLowerCase match {
case "red" => Color("Red")
case "blue" => Color("Blue")
case "green" => Color("Green")
case _ => Color("Unknown")

}

scala> val c: Color = "Red"
val c: Color = Color(Red)

Notes:

This is a horribly contrived example. A more typical thing would be writing a
function from a tuple (Double,Double) to a Geo(latitude,longitude)

Warning!!!

This seems cool and magical (it did to me when I first saw it) but it can be easily
abused, and often you actually don’t want the compiler making unexpected
class conversions. (It’s hard to debug, especially if you have lots of these
defined all over.)

Dotty (Scala 3) will require that you import scala.language.implicitConversions
into any scope you want this to work, just to make it harder to allow these bugs.

IMPLICIT CLASSES (CLASS EXTENSIONS)

Problem: you need to add some functionality to a pre-existing class. (One that
you don’t have access to.)

Example: if I have two lists of doubles, I want to be able to do a pair-wise
addition using just the + sign.

scala> List(1.0, 1.2) + List(3.2, 3.2)
error: type mismatch;
found : List[Double]
required: String

Old-fashioned solution: create a subclass with the new functionality and just
use that. This leads to inheritance tree nightmares and ultimately messy code.

Scala solution: create an Implicit Class to “wrap” the original object and
extend the functionality!

implicit class Ops(list: List[Double]) {
def +(other: List[Double]): List[Double] = {

(list zip other).map(t => t._1 + t._2)
}

}
scala> List(1.0, 2.0) + List(3.0, 4.0)
val res6: List[Double] = List(4.0, 6.0)

Notes:

1. This is super-useful because it allows you to ”bolt-on” new functionality to
clases as needed.

2. Implicit classes cannot be top-level objects in a Scala source file; you must
put them inside a class or object. (Often this goes in companion objects.)

3. To make this less confusing (more straightforward) Dotty (Scala 3) has
replaced this with “extension methods”.

A QUICK DIVERSION: CURRYING
SO YOU DON’T GET CONFUSED IN THE NEXT SECTION

If you see something like this:
def foo(first: Int)(second: Int): Int = first + second

…you can essentially think of it as this:

def foo(first: Int, second: Int): Int = first + second

When you see this, it is called ”currying” and it’s a way of building ”partial
functions”. It’s a little esoteric, and it’s not important to dive too deeply into this.

IMPLICIT PARAMETERS (PART 1: QUASI-
DEPENDENCY INJECTION)

Problem: your code is getting messy because you’re passing default objects
around between methods.

def makeString(n: Double, f: NumberFormat): String = f.format(n)

def reportError(n: Double, f: NumberFormat): String =
makeString(n,f) + " isn't allowed here."

def printDouble(n: Double, f: NumberFormat): String =
makeString(n * 2,f)

This isn’t too bad looking (assuming those functions really need to have a
NumberFormat object around), but once you start using it, the code looks a bit
tedious, always passing around the formatter…

scala> val formatter = NumberFormat.getPercentInstance()
val formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc
scala> reportError(1.2, formatter)
val res3: String = 120% isn't allowed here.
scala> printDouble(0.3, formatter)
val res4: String = 60%

Solution: rework your functions slightly so that they take two sets of arguments:
the primary parameters and then the “implicit” parameters…Then

def makeString(n: Double)(implicit f: NumberFormat): String = f.format(n)

def reportError(n: Double)(implicit f: NumberFormat): String =
makeString(n)(f) + " isn't allowed here."

def printDouble(n: Double)(implicit f: NumberFormat): String =
makeString(n * 2)(f)

Next, when you’re ready to use these functions, define an implicit value:
scala> implicit val formatter = NumberFormat.getPercentInstance()
val formatter: java.text.NumberFormat = java.text.DecimalFormat@674dc
scala> reportError(-1.2)
val res1: String = -120% isn't allowed here.

Notes:

1. You can still explicitly pass the second set of arguments if you don’t want to
use implicit values. (i.e. you haven’t defined an implicit value, or you want to
override it with a different value)

2. You can only have one implicit value for any type/class in scope. Otherwise
the compiler won’t know which to use and will throw an error.

3. This example is a bit contrived (although you might pass configuration
parameters this way) and more often you want to be working with implicit
functions (functional programming) or typeclasses.

4. Dotty (Scala 3) replaces this with the keyword “given”

A QUICK DIVERSION: TYPE CLASSES
THE WIZARD’S MAGIC WAND IN ADVANCED SCALA FUNCTIONAL PROGRAMMING

START WITH AN OBJECT THAT HELPS YOU DO
SOMETHING (IT EXPOSES FUNCTIONS)

In an earlier example, we used a Java NumberFormat class. This does two
things:

1. Parse a string to get a number (“103.4%” à 1.034)

2. Turn a number into a formatted string (2 à “200%”)

This allows an abstraction where one NumberFormat object may work with
percentages, another may work with currency, a third may be used to convert
numbers into strict scientific notation, etc.

def makeString(n: Double)(implicit f: NumberFormat): String = f.format(n)

def reportError(n: Double)(implicit f: NumberFormat): String =
makeString(n)(f) + " isn't allowed here."

def printDouble(n: Double)(implicit f: NumberFormat): String =
makeString(n * 2)(f)

This is something that helps perform
some operation. (e.g. formatting)

Here’s where I
use this helper.

Now, let’s abstract this pattern to make it more
powerful…

INTRODUCING THE TYPE CLASS

trait Converter[T] {
def parse(s: String): T
def format(o: T): String
def formalFormat(o: T): String =

"The answer is " + format(o)
}

Generic: no pre-assumption of
what class it will work with.

Define the functionality,
not any concrete
implementation.

May include some logic, as
long as it’s generically
written.

Strictly speaking, a Type Class is
something that will convert a class (T)
into a new class/interface
(Converter[T]).

CREATING INSTANCES OF THE TYPE CLASS:
PLUG IN THE TYPE & ADD THE IMPLEMENTATION DETAILS

trait Converter[T] {
def parse(s: String): T
def format(o: T): String
def formalFormat(o: T): String = "The answer is " + format(o)

}

class NumberConverter(f: NumberFormat) extends Converter[Number] {
override def parse(s: String): Number = f.parse(s)
override def format(o: Number): String = f.format(o)

}

def numberConverter(f: NumberFormat) = new Converter[Number] {
override def parse(s: String): Double = s.toDouble
override def format(x: Double): String = f.format(x)

}A
lte

rn
at

iv
e

w
ay

s
to

 c
re

at
e

in
st

an
ce

s.

CREATING INSTANCES OF THE TYPE CLASS:
PLUG IN THE TYPE & ADD THE IMPLEMENTATION DETAILS

trait Converter[T] {

def parse(s: String): T

def format(o: T): String

def formalFormat(o: T): String = "The answer is " + format(o)

}

case class Color(red: Double, green: Double, blue: Double)

object ColorConverter extends Converter[Color] {

override def parse(s: String): Color = s match {

case "Red" => Color(1.0, 0.0, 0.0)

case "Green" => Color(0.0, 1.0, 0.0)

case "Blue" => Color(0.0, 0.0, 1.0)

case _ => Color(0.0, 0.0, 0.0)

}

override def format(o: Color): String = o match {

case Color(1.0, 0.0, 0.0) => "Red"

case Color(0.0, 1.0, 0.0) => "Green"

case Color(0.0, 0.0, 1.0) => "Blue"

case _ => "Unknown Color"

}

}

IMPLICIT PARAMETERS (PART 2: TYPE CLASSES, AKA
“PIMP MY LIBRARY”)

Goal 1: seamlessly “attach” functionality to classes without touching the classes
themselves.

Goal 2: write generic code that can be applied to many different classes
without repetition.

val color = "Red".convertTo[Color]

val pct = "130%".convertTo[Number]

Common class such
as String.

Bolted-on function, generically
written so we can add support
for new types ad-hoc.

TO PUT IT ANOTHER WAY, WE WANT TO BUILD
REUSABLE LIBRARIES OF GENERAL FUNCTIONALITY
THAT ARE MODULAR, THAT FREE US OF
BOILERPLATE, AND THAT DON’T MAKE USE CHANGE
OUR BASE CLASSES.
THIS IS WHERE FUNCTIONAL PROGRAMMING STARTS BECOMING MAGICAL

PUTTING IT ALL TOGETHER IN 3 STEPS

1. Declare the Type Class

2. Create a type-specific implementation (and have the
implementation be an implicit value so we can inject it in step 3

3. Use implicit classes to bolt the implementation into the original
target classes

et voila! Magic!

trait Converter[T] {
def parse(s: String): T
def format(o: T): String
def formalFormat(o: T): String = "The answer is " + format(o)

}

object Converter {
implicit class StringOps(s: String) {

def convertTo[T](implicit c: Converter[T]): T = c.parse(s)
}
implicit class ConvOps[T](o: T) {

def formatObj(implicit c: Converter[T]): String = c.format(o)
def formal(implicit c: Converter[T]): String = c.formalFormat(o)

}

implicit val color = ColorConverter
implicit val percent =

new NumberConverter(NumberFormat.getPercentInstance())
}

Bo
lt

ob
je

ct
 c

re
at

io
n

on
to

 S
tr

in
g

an
d

fo
rm

at
tin

g
on

to
 T

 w
ith

 im
pl

ic
it

cl
as

se
s

Make sure implementations are defined and in scope so
they can be found and injected.

YOUR “LIBRARY” IS DONE. THE HARD PART IS OVER.
NOW THE FUNCTIONALITY IS SUPER-EASY TO USE!

import example.Converter._
import example.Color

scala> val color = "Red".convertTo[Color]
val color: Color = Color(1.0,0.0,0.0)
scala> val pct = "130%".convertTo[Number]
val pct: Number = 1.3
scala> val colorStr = Color(0.0, 1.0, 0.0).formatObj
val colorStr: String = Green
scala> val pctStr = pct.formal
val pctStr: String = The answer is 130%

ONE LAST (MORE PRACTICAL) EXAMPLE

Leveraging the “Numeric” Type Class in Scala’s build-in core library

PAIRWISE ADDITION OF NUMERIC SEQUENCES

Goal: be able to add two sequences (lists) together with the simple + symbol.

I.e. for x = List(1,2) and y = List(3,7), convert this:

(x zip y).map(t => t._1 + t._2)

into this:

x + y

And I want this to work for lists of Integers, Longs or Doubles without re-writing
boilerplate code for each!

INTRODUCING scala.math.Numeric[T] TYPE CLASS

• This is part of the Scala library.

• Numeric[T] is has implicitly defined instances for Float, Integer, Double, Long

• Numeric[T] provides functionality to add, multiple, compare, negate, etc. and
also has values for one and zero.

implicit class Ops(list: List[Double]) {
def +(other: List[Double]): List[Double] = {

(list zip other).map(t => t._1 + t._2)
}

}

ORIGINAL (NON-GENERIC) IMPLEMENTATION

implicit class Ops[T](list: List[T]) {
def +(other: List[T])(implicit ntc: Numeric[T]): List[T] = {
(list zip other).map(t => ntc.plus(t._1, t._2))

}
}

BASIC (GENERIC) IMPLEMENTATION

implicit class Ops[T: Numeric](list: List[T]) {
def +(other: List[T])(implicit ntc: Numeric[T]): List[T] = {
(list zip other).map(t => ntc.plus(t._1, t._2))

}
}

SLIGHTLY MORE TYPESAFE DEFINITION

This strictly means “for any value T where we know there is a Numeric[T] type
class available”. So this implicit class will only try to bolt-on this operation to lists
of “numeric” types. A List[String] would not get this functionality.

implicit class Ops[T: Numeric](list: List[T]) {
def +(other: List[T])(implicit ntc: Numeric[T]): List[T] = {

val len = Math.max(list.length, other.length)
val zero = ntc.zero

(list.padTo(len,zero) zip other.padTo(len,zero)).map(t =>
ntc.plus(t._1, t._2))

}
}

ADD SUPPORT FOR UNEVEN LISTS

If one list is longer than the other, then pad the shorter list with zeros before zipping
and adding. Fortunately, Numeric[T] also provides a .zero member so we can properly
pad the lists!

FOLLOW-UP READING

• Scala with Cats, chapter 1

• It’s FREE

• Chapter 1 goes through implicits and type classes

• Walks through a concrete Show[T] example that creates a type-safe
replacement for Java’s Object.toString()

• Includes helpful exercises along the way

